skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buehler, Stefan_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We investigate the effect of uncertainty in water vapor continuum absorption at terrestrial wavenumbers on CO2forcing , longwave feedbackλ, and climate sensitivity at surface temperaturesTsbetween 270 and 330 K. We calculate this uncertainty using a line‐by‐line radiative‐transfer model and a single‐column atmospheric model, assuming a moist‐adiabatic temperature lapse‐rate and 80% relative humidity in the troposphere, an isothermal stratosphere, and clear skies. Due to the lack of a comprehensive model of continuum uncertainty, we represent continuum uncertainty in two different idealized approaches: In the first, we assume that the total continuum absorption is constrained at reference conditions; in the second, we assume that the total continuum absorption is constrained for all atmospheres in our model. In both approaches, we decrease the self continuum by 10% and adjust the foreign continuum accordingly. We find that continuum uncertainty mainly affects through its effect onλ. In the first approach, continuum uncertainty mainly affectsλthrough a decrease in the total continuum absorption withTs; in the second approach, continuum uncertainty affectsλthrough a vertical redistribution of continuum absorption. In both experiments, the effect of continuum uncertainty on is modest atTs = 288 K (≈0.02 K) but substantial atTs ≥ 300 K (up to 0.2 K), because at highTs, the effects of decreasing the self continuum and increasing the foreign continuum have the same sign. These results highlight the importance of a correct partitioning between self and foreign continuum to accurately determine the temperature dependence of Earth's climate sensitivity. 
    more » « less